Tandem Mass Spectrometry of Intact Proteins for Characterization of Biomarkers from Bacillus cereus T Spores

Abstract
Intact protein biomarkers from Bacillus cereus T spores have been analyzed by high-resolution tandem Fourier transform ion cyclotron resonance mass spectrometry. Two techniques have been applied for excitation of the isolated multiply charged precursor ion species: sustained off-resonance irradiation/collisionally activated dissociation and electron capture dissociation. Fragmentation-derived sequence tags and BLAST sequence similarity proteome database searches allow unequivocal identification of the major biomarker protein with unprecedented specificity. Sequence-specific fragmentation patterns further confirm protein identification. Moreover, methodology combining accurate mass measurements of intact proteins with additional information contained in a proteome database permits tentative assignment of several other protein biomarkers isolated from the B. cereus T spores. We argue that approaches involving tandem MS of protein biomarkers, combined with bioinformatics, can drastically improve the specificity of individual microorganism identification, particularly in complex environments.