Highly stable strained layer leaky-mode diode laser arrays

Abstract
A simple fabrication process for InGaAs strained quantum well leaky-mode laser arrays is demonstrated. The arrays are ten-element devices grown by two-step metal-organic chemical vapor deposition. The structure consists of a strained quantum well InGaAs graded index-separate confinement active region and a thin (0.12 mu m), transparent GaAs waveguide region. The near-field pattern typical of leaky-mode phase-locked arrays was measured. Fundamental mode oscillation was observed up to 2 A (threshold was as low as 175 mA). The authors observed a 1 mu s pulsed optical output power of 172 mW per facet and a far-field angle (full width at half maximum) of 1.6 times the diffraction limit at 1 A. This is the first reported operation of a strained quantum well leaky-mode laser utilizing a built-in index step.<>