Possible Phases of the Two-Dimensional t-t' Hubbard Model
Abstract
We present a stability analysis of the 2D t-t' Hubbard model on a square lattice for various values of the next-nearest-neighbor hopping t' and electron concentration. Using the free energy expression, derived by means of the flow equations method, we have performed numerical calculation for the various representations under the point group C_4mm in order to determine the phase diagram. A surprising large number of phases has been observed. Some of them have an order parameter with many nodes in k-space. Commonly discussed types of order found by us are antiferromagnetism, d_{x^2-y^2}-wave singlet superconductivity, d-wave Pomeranchuk instability and flux phase. A few instabilities newly observed are a triplet analog of the flux phase, a particle-hole instability of p-type symmetry in the triplet channel which gives rise to a phase of magnetic currents, an s*-magnetic phase, a g-wave Pomeranchuk instability and the band splitting phase with p-wave character. Other weaker instabilities are found also. We study the interplay of these phases and favorable situations of their occurrences. A comparison with experiments is made.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: