A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes
Open Access
- 13 April 2006
- journal article
- case report
- Published by Oxford University Press (OUP) in Human Molecular Genetics
- Vol. 15 (11) , 1793-1800
- https://doi.org/10.1093/hmg/ddl101
Abstract
Neonatal diabetes is a genetically heterogeneous disorder with nine different genetic aetiologies reported to date. Heterozygous activating mutations in the KCNJ11 gene encoding Kir6.2, the pore-forming subunit of the ATP-sensitive potassium (KATP) channel, are the most common cause of permanent neonatal diabetes. The sulphonylurea receptor (SUR) SUR1 serves as the regulatory subunit of the KATP channel in pancreatic beta cells. We therefore hypothesized that activating mutations in the ABCC8 gene, which encodes SUR1, might cause neonatal diabetes. We identified a novel heterozygous mutation, F132L, in the ABCC8 gene of a patient with severe developmental delay, epilepsy and neonatal diabetes (DEND syndrome). This mutation had arisen de novo and was not present in 150 control chromosomes. Residue F132 shows evolutionary conservation across species and is located in the first set of transmembrane helices (TMD0) of SUR1, which is proposed to interact with Kir6.2. Functional studies of recombinant KATP channels demonstrated that F132L markedly reduces the sensitivity of the KATP channel to inhibition by MgATP and this increases the whole-cell KATP current. The functional consequence of this ABCC8 mutation mirrors that of KCNJ11 mutations causing neonatal diabetes and provides new insights into the interaction of Kir6.2 and SUR1. As SUR1 is expressed in neurones as well as in beta cells, this mutation can account for both neonatal diabetes and the neurological phenotype. Our results demonstrate that SUR1 mutations constitute a new genetic aetiology for neonatal diabetes and that they act by reducing the KATP channel's ATP sensitivity.Keywords
This publication has 38 references indexed in Scilit:
- Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotypeDiabetologia, 2006
- Activating Mutations in Kir6.2 and Neonatal DiabetesDiabetes, 2005
- Mutations in the Kir6.2 subunit of the KATPchannel and permanent neonatal diabetes: New insights and new treatmentAnnals of Medicine, 2005
- Relapsing diabetes can result from moderately activating mutations in KCNJ11Human Molecular Genetics, 2005
- KCNJ11activating mutations in Italian patients with permanent neonatal diabetesHuman Mutation, 2004
- Permanent Neonatal Diabetes due to Mutations in KCNJ11 Encoding Kir6.2Diabetes, 2004
- Kir6.2 Mutations Are a Common Cause of Permanent Neonatal Diabetes in a Large Cohort of French PatientsDiabetes, 2004
- Activating Mutations in the Gene Encoding the ATP-Sensitive Potassium-Channel Subunit Kir6.2 and Permanent Neonatal DiabetesNew England Journal of Medicine, 2004
- Permanent diabetes mellitus in the first year of lifeDiabetologia, 2002
- Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes.Diabetes, 2000