VLSI architecture of a programmable real-time video signal processor

Abstract
Coding schemes for data rate reduction of digital video signals are being devised for various application areas. Such applications call for video signal processors suited for real-time operation and realization with small size. Small size can be achieved using advanced VLSI technology. Real-time processing of video signals re- quires several 100 Mega operations per second (MOPS) and correspondingly high data rates for operand transport. These requirements can be met by multiprocessors employing parallelization and pipelining in an adapted architecture. In order to support distinct applications, the multiprocessors have to be programmable. The requirements of video coding schemes have been extracted and mapped into a multiprocessor architecture for programmable real-time video processing. In this contribution, the extracted requirements, the adapted architecture of a multiprocessor, and the multiprocessor modules are presented. The realization of several modules of the multiprocessor using CMOS technology is also reported.

This publication has 0 references indexed in Scilit: