Abstract
The time-resolved light-scattering changes of aqueous, aerated solutions of poly-C, poly-U and poly-A at pH 7·8, following pulse irradiation, have been studied as indices of strand break formation. With doses of 4–24 Gy/pulse a number of kinetically distinct components have been detected. For the polypyrimidines an immediate and fast reduction (τ1/2 ≤ 50μs) in light-scattering intensity (LSI), accounting for ∼ 20% of the total LSI change, is followed by a much slower loss (k1 ≈ 1·6 s−1) which constitutes their major LSI change. For poly-A a similar fast component is observed, present to an extent equivalent to the one noted with poly-C; it constitutes, however, over 50% of the purine polynucleotide's total response, with the remainder of the change being a slower loss (τ1/2 ∼ 0·09 s). Optical pulse radiolysis studies of poly-C and poly-U, in support of the LSI investigations, show that transient absorbances in a region assigned to base peroxyl radicals decay in a complex fashion, with some at a rate equivalent to that for the slow (major) component of LSI loss. These observations support a proposal that the rate-limiting step of major strand breakage for these polynucleotides, in the presence of oxygen, is a base peroxyl radicalmediated abstraction of a H-atom from an adjacent sugar moiety (Bothe et al. 1986), with the resulting sugar peroxyl radicals then leading to strand break formation at a rate equivalent to that for loss of the initial, fast LSI components. These latter processes are attributed to strand breaks arising from the direct interaction of .OH with the polynucleotide sugar phosphate backbone.

This publication has 35 references indexed in Scilit: