Metalloform-Selective Inhibitors of Escherichia coli Methionine Aminopeptidase and X-ray Structure of a Mn(II)-Form Enzyme Complexed with an Inhibitor
- 12 October 2004
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 126 (43) , 13940-13941
- https://doi.org/10.1021/ja045864p
Abstract
Methionine aminopeptidase (MetAP) enzymes require a divalent metal ion such as Mn(II), Fe(II), Co(II), Ni(II), or Zn(II) for its removal of the N-terminal methionine from newly synthesized proteins, but it is not certain which of these ions is most important in vivo. Metalloform-selective MetAP inhibitors could be valuable for defining which metals are physiologically relevant for MetAP activation and could serve as leads for development of new therapeutic agents. We have screened a library of 43 736 small drug-like molecules against Escherichia coli MetAP and identified two groups of potent and highly metalloform-selective inhibitors of the Co(II)-form, and of the Mn(II)-form, of this enzyme. Compound 1 is 790-fold more selective for the Co(II)-form, while compound 4 is over 640-fold more potent toward the Mn(II)-form. The X-ray structure of a di-Mn(II) form of E. coli MetAP complexed with the Mn(II)-form-selective compound 4 was obtained, and it shows that the inhibitor interacts with both Mn(II) ions through the two oxygen atoms of its free carboxylate group. The preferential coordination of the hard (oxygen) donors to Mn(II) may contribute to its superb selectivity toward the Mn(II)-form.Keywords
This publication has 7 references indexed in Scilit:
- The 1.15Å Crystal Structure of the Staphylococcus aureus Methionyl-aminopeptidase and Complexes with Triazole Based InhibitorsJournal of Molecular Biology, 2003
- Kinetic and Structural Characterization of Manganese(II)-Loaded Methionyl AminopeptidasesBiochemistry, 2002
- Methionine In and Out of Proteins: Targets for Drug DesignCurrent Medicinal Chemistry, 2002
- Structure and function of the methionine aminopeptidasesPublished by Elsevier ,2000
- Yeast methionine aminopeptidase I can utilize either Zn2+ or Co2+ as a cofactor: A case of mistaken identity?Protein Science, 1998
- N-Terminal processing: the methionine aminopeptidase and Nα-acetyl transferase familiesTrends in Biochemical Sciences, 1998
- Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicinChemistry & Biology, 1997