This paper describes methods of constrained and restrained refinement of EXAFS data which provide a means of substantially reducing the number of independent parameters compared to conventional least-squares methods commonly used. Constrained refinement allows a major reduction in the number of free parameters for a refinement of a structural model. In restrained refinement, additional structural information from well-characterized small molecules is used to provide additional observations in the data analysis. Even though these methods are of general application to the majority of complex systems, they are particularly valuable for biological molecules. The methods are of major advantage for ligands where significant multiple scattering is present, e.g., histidine, tyrosine, CO, CN, etc. The bases of these methods are described, and applications to some complex chemical and biological systems are given.