Expression and regulation of mouse SERDIN1, a highly conserved cardiac‐specific leucine‐rich repeat protein
Open Access
- 13 April 2005
- journal article
- research article
- Published by Wiley in Developmental Dynamics
- Vol. 233 (2) , 540-552
- https://doi.org/10.1002/dvdy.20368
Abstract
Despite recent progress, the precise mechanisms responsible for vertebrate cardiac development are still enigmatic. Better understanding of cardiac biology and disease necessitates identification and analysis of a full spectrum of regulatory and structural proteins specific to the developing heart. By performing an in silico screen, we identified a cardiac-specific gene we named Serdin1. The Serdin1 gene is conserved, and the message is restricted to the heart in several vertebrate species, thus implicating Serdin1 as an important gene in cardiac development. In situ hybridization confirmed that the Serdin1 message is cardiac-specific in mice as early as embryonic day 8.5. Antibody staining demonstrated predominantly nuclear staining in immortalized cardiac cell lines (P19 and HL-1) and proliferating cultured cardiomyocytes, whereas in vivo SERDIN1 localizes to I bands of the sarcomere. Seven kilobases of the upstream regulatory sequence of Serdin1 is sufficient for cardiac-specific expression. Computer analysis revealed an 80-bp homologous region between the mouse and the human Serdin genes that contains GATA, SRF, and MEF sites. Cardiac specificity and localization patterns suggest that SERDIN1 is intimately integrated with the molecular pathways controlling cardiogenesis in vertebrates. Developmental Dynamics 233:540–552, 2005.Keywords
This publication has 30 references indexed in Scilit:
- LRR-containing receptors regulating plant development and defenseDevelopment, 2004
- The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signallingNature Cell Biology, 2003
- Structural principles of leucine‐rich repeat (LRR) proteinsProteins-Structure Function and Bioinformatics, 2003
- Genes required for B cell developmentJournal of Clinical Investigation, 2003
- Finding nuclear localization signalsEMBO Reports, 2000
- Regulation of proliferation of the fetal myocardiumDevelopmental Dynamics, 2000
- Differential Expression of Cardiac Titin Isoforms and Modulation of Cellular StiffnessCirculation Research, 2000
- Molecular Tools for the Study of Titin’s Differential ExpressionPublished by Springer Nature ,2000
- Factors Involved in Cardiogenesis and the Regulation of Cardiac-Specific Gene ExpressionCirculation Research, 1996
- Congenital heart disease: A 10 year cohortJournal of Paediatrics and Child Health, 1994