Creep Tests of Rotating Disks at Elevated Temperature and Comparison With Theory

Abstract
A theoretical and experimental program involving methods of calculating creep in rotating disks at elevated temperatures is described. This program consisted primarily of the following: (a) Obtaining forged disks from the same ingot of 12 per cent chrome steel, all disks being forged and heat-treated in the same manner; (b) making spin tests at 1000 F on three of these disks for periods up to about 1000 hr; ( ) making long-time tension-creep tests at 1000 F on many specimens cut out circumferentially from several of the other disks at stresses approximating those of the spin tests; (d) investigating theoretical methods of calculation of creep deformation in such disks; and (e) comparison of spin-test results with those calculated theoretically using average tension-creep data. It was found that available methods of calculating rotating disks based on the Mises criterion gave creep deformations too low compared to the test values, i.e., on the unsafe side for design. Considerably better agreement between test and theoretical results is obtained if the latter is based on the maximum-shear theory. Some discussion is given of the reasons for the better agreement obtained using the latter theory; these are believed to be related in part to the anisotropy of the forged material tested. Further tests on other materials are necessary before general conclusions can be drawn; however, in the absence of test data it is suggested that a conservative course in design for such disks is to apply the maximum-shear theory.

This publication has 0 references indexed in Scilit: