Crystallographic and transport studies on AsF5 intercalated graphite from 4.2 to 295 K. II. Effects of structural transformations and demixing on basal plane and c-axis electrical resistivity
- 1 February 1988
- journal article
- Published by Springer Nature in Journal of Materials Research
- Vol. 3 (1) , 97-104
- https://doi.org/10.1557/jmr.1988.0097
Abstract
Part I of this study has shown that first stage AsF5 intercalated graphite samples can be classified into two types of compounds, depending upon the nature of the structural modifications they undergo upon lowering the temperature from 295 to 4.2 K. These structural changes are related to demixing of the species contained within the intercalate resulting in the formation of phases rich in AsF5, AsF−6 − AsF5, or AsF3 depending on the degree to which the AsF5 has been converted into AsF−6 and AsF3. Resistivity studies have been carried out in the basal plane [ρa (T)] and along the c axis [ρc (T)]. The type 1 compounds, in which the AsF5 has undergone little conversion, manifest a ρa (T) transition related to the incommensurate-to-commensurate (I⇉C) transformation of the AsF5 in-plane unit cell and a rapid, structureless 300 to 200 K decrease in ρc (T). The type 2 compounds involving a greater degree of conversion of AsF5 into AsF3 and AsF6 yield more complex ρc (T) behavior from 300 to 200 K attributed to the more involved ordering phenomena; no anomalies are seen in ρa (T). In the case of the stage 2 compounds, changes in ρc (T) are seen down to lower temperatures in accord with structural data indicating a downshift of the I⇉C transformation by ∼ 70 K. The transport results are discussed in the light of the crystallographic data and the low-temperature results are analyzed within the framework of proposed conductivity models.Keywords
This publication has 9 references indexed in Scilit:
- Crystallographic and transport studies on AsF5 intercalated graphite from 4.2 to 295 K. I. Structural ordering and phase separationJournal of Materials Research, 1988
- Conductivity anisotropy in AsF5 — intercalated graphiteJournal of Physics and Chemistry of Solids, 1987
- C-Axis Conduction in Low Stage Graphite Intercalation Compounds with Iodine MonochrolideJournal of the Physics Society Japan, 1986
- A model for c-axis electrical conduction in graphite intercalation compoundsSynthetic Metals, 1985
- Ionic salt limit in graphite–fluoroarsenate intercalation compoundsThe Journal of Chemical Physics, 1983
- 19F NMR of antimony and arsenic pentafluoride-graphite derivativesSynthetic Metals, 1982
- Electrical transport properties of low-stage AsF5-intercalated graphiteJournal of Materials Science, 1979
- Nuclear magnetic resonance and static magnetic susceptibility of AsF5 - intercalated graphiteSolid State Communications, 1978
- Conduction electron spin resonance in acceptor-type graphite intercalation compoundsSolid State Communications, 1978