Sodium‐potassium pump current in smooth muscle cells from mesenteric resistance arteries of the guinea‐pig

Abstract
1. The Na+-K+ pump current was studied in smooth muscle cells from mesenteric resistance arteries of guinea-pigs by the use of the perforated patch-clamp technique in the presence of blockers for various ion channels and exchangers. 2. When the Na+ concentration in the pipette solution ([Na+]i) was 50 mM, an increase in the extracellular K+ concentration ([K+]o) from 0 to 10 mM caused an outward current. Both the removal of K+ from the bath solution and the application of 10 microM ouabain abolished this current. Thus, this K+-induced and ouabain-sensitive current was considered to be the Na+-K+ pump current. 3. The amplitude of the Na+-K+ pump current increased as the membrane potential was made more positive until around 0 mV, while the amplitude saturated at more positive potentials than 0 mV. 4. An increase in [K+]o or [Na+]i amplified the Na+-K+ pump current. For [K+]o, the binding constant (Kd) was 1.6+/-0.3 mM and the Hill coefficient (nH) was 1.1+/-0.2 (n = 6). For [Na+]i, Kd was 22+/-5 mM and nH was 1.7+/-0.5 (n = 4-19). 5. The presence of various monovalent cations other than Na+ in the bath solution also evoked the Na+-K+ pump current. The order of potency was K+ >= Rb+ > Cs+ >> Li+. 6. Ouabain inhibited the Na+-K+ pump current in a dose-dependent manner with a Kd of 0.35+/-0.03 microM and an nH of 1.2+/-0.1 (n = 6-8). 7. The Na+-K+ pump current increased as temperature increased. The temperature coefficient (Q10; 26-36 C) was 1.87 (n = 9). 8. In summary the present study characterized for the first time the Na+-K+ pump current in vascular smooth muscle cells by the use of the voltage-clamp method. The use of this method should provide essential information for Na+,K+-ATPase-mediated changes in the cell functions of vascular smooth muscle cells.