Abstract
In this paper we study the nonlinear initial boundary value problem(1.1) ωttαΔ ωtΔω= f(ω), t> 0ω(x, 0) = ϕ(x), x∈ Ωωt(x, 0) = ψ (x), x∈ Ωω(x, t ) = 0, x ∈ ∂Ω, t ≥ 0.In (1.1) Ω is a smooth bounded domain in Rn, n = 1, 2, 3, α > 0, and fC1(R;R) with f‘(x) ≦ co for all x ∈ R (where c0 is a nonnegative constant), lim sup|x|→+∞f(x)/x ≦0, and f(0) = 0. Our objective will be to establish the existence of unique strong global solutions to (1.1) and investigate their behavior as t→ +∞.Our approach takes advantage of the semilinear character of (1.1) and reformulates the problem as an abstract ordinary differential equation in a Banach space.

This publication has 1 reference indexed in Scilit: