Ductile Regime Mirror Finish Grinding of Ceramics with Electrolytic In-process Dressing (ELED) Grinding

Abstract
Advanced structural ceramics, such as silicon nitride based materials, are of interest owing to their unique physical and mechanical properties. However the cost of grinding these ceramics, which is an integral part of their fabrication, is very high. Moreover, grinding can result in surface and sub-surface damage in the material and these defects can significantly reduce the strength and reliability of the finished components. Grinding damage is sensitive to grinding parameters. Two types of silicon nitride based ceramic materials were ground with Electrolytic In-Process Dressing (ELID) using different grit sized metal bonded diamond grinding wheels. With the application of ELID technology, mirror surface finish was realized with a #4000 mesh size wheel (average grain size = 4μm). Differences in ground surface topography caused by wheel grain size were analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM and AFM studies reveal that material was predominantly removed in the ductile mode when ELID grinding was performed with a #4000 grit size wheel or finer.