The Lax conjecture is true
Top Cited Papers
Open Access
- 31 March 2005
- journal article
- Published by American Mathematical Society (AMS) in Proceedings of the American Mathematical Society
- Vol. 133 (9) , 2495-2499
- https://doi.org/10.1090/s0002-9939-05-07752-x
Abstract
In 1958 Lax conjectured that hyperbolic polynomials in three variables are determinants of linear combinations of three symmetric matrices. This conjecture is equivalent to a recent observation of Helton and Vinnikov.Keywords
All Related Versions
This publication has 9 references indexed in Scilit:
- Relating Homogeneous Cones and Positive Definite Cones via T-AlgebrasSIAM Journal on Optimization, 2003
- On Nesterov's Approach to Semi-infinite ProgrammingActa Applicandae Mathematicae, 2002
- Hyperbolic Polynomials and Convex AnalysisCanadian Journal of Mathematics, 2001
- Hyperbolic Polynomials and Interior Point Methods for Convex ProgrammingMathematics of Operations Research, 1997
- Interior-Point Polynomial Algorithms in Convex ProgrammingPublished by Society for Industrial & Applied Mathematics (SIAM) ,1994
- Self-adjoint determinantal representations of real plane curvesMathematische Annalen, 1993
- An Inequality for Hyperbolic PolynomialsIndiana University Mathematics Journal, 1959
- Differential equations, difference equations and matrix theoryCommunications on Pure and Applied Mathematics, 1958
- Linear hyperbolic partial differential equations with constant coefficientsActa Mathematica, 1951