Abstract
The objective of this paper is to present a method which can accommodate certain types of missing data by using the quasi-likelihood function for the complete data. This method can be useful when we can make first and second moment assumptions only; in addition, it can be helpful when the EM algorithm applied to the actual likelihood becomes overly complicated. First we derive a loss function for the observed data using an exponential family density which has the same mean and variance structure of the complete data. This loss function is the counterpart of the quasi-deviance for the observed data. Then the loss function is minimized using the EM algorithm. The use of the EM algorithm guarantees a decrease in the loss function at every iteration. When the observed data can be expressed as a deterministic linear transformation of the complete data, or when data are missing completely at random, the proposed method yields consistent estimators. Examples are given for overdispersed polytomous data, linear random effects models, and linear regression with missing covariates. Simulation results for the linear regression model with missing covariates show that the proposed estimates are more efficient than estimates based on completely observed units, even when outcomes are bimodal or skewed.

This publication has 12 references indexed in Scilit: