Abstract
Magnetogravimetric, magnetohydrostatic, and magnetohydrodynamic separation techniques can be classified as magnetic separations of the second kind. Magnetic separation of the first kind (ordinary magnetic separation) relies on the inherent magnetic susceptibility of the material to be separated. When the medium of separation rather than the separated particles is made magnetizable, a new system of gravity separations can result (magnetic separation of the second kind). In magnetogravimetry, a colloidal solution of a ferro- or ferrimagnetic substance (magnetic fluid) acts as the separation medium. Magnetohydrostatic separations are conducted in an aqueous solution (or melt) of a strongly paramagnetic salt. Magnetohydrodynamics applies the Faraday effect (mutual orthogonality of the force thrust, electric, and magnetic fields) on suspended conducting minerals in an electrolytic solution placed in crossed electric and magnetic fields. The first technique was pioneered mainly in the United States, while the last two techniques were pioneered by Bunin and Andres in the Soviet Union and introduced to the West by Andres. The principles underlying the three separation techniques will be discussed.