Abstract
Our understanding of the functional structure of extraocular muscles has undergone a profound change: while these muscles used to be represented by strings running straight from their origin in the posterior orbita to their insertion on the globe, we now know that their paths and pulling directions are dominated by fibromuscular pulley structures, keeping them close to the orbital wall for most of their path. An overview is presented of recent models that have been developed to understand the implications of muscle pulleys for the neural control of eye movements and the applications of such models to the interpretation of experimental data.