Abstract
The processes involved in the formation of primordia on the shoor apex are those controlling (1) growth rate, (2) division plane. (3) surface microstructure, and (4) extensibility of the surface. Changes in growth rate and division planes may accompany primordium formation but are considered as probably not in themselves being causal. Changes in surface microstructure may be necessary to delimit the position and area occupied by an incipient primordium. However, attention is directed to changes in surface extensibility as perhaps being the overriding factor in primordium formation. Nevertheless, the position and form of the primordia will also depend on growth rate, division plane, and surface microstructurc being permissive. The relative importance of these four sets of processes may differ from species to species and from one stage of development to another. Chemical and metabolic changes within the apex may first be necessary to determine whether the surface can extend sufficiently for any primordia to form at all, but their positions and time of initiation may depend more on the other factors. The surface microstructure may become more important when patterning is detailed and precise as it is in the developing flower, whereas a less precise mechanism dependent on localized induction of synthesis of a morphogen (auxin?) may provide sufficient information to determine the general position and liming of primordium initiation in vegetative apices. In determining the pattern of primordia on the apex, primordial area at initiation is important and reasons for believing that auxin may be involved in determining this are summarised. The different developmental pathways of primordia seem to diverge from the moment of initiation. Developmental fate of primordia is determined by the hamcotic genes which may in fact be heterochronic genes. How these regulatory genes control the processes involved in differentiation of different types of primordia is so far unknown. Contents Summary 1 I. Introduction 2 II. The mechanism of primordium formation: what causes an outgrowth of the apical surface? 2 III. The positions of successive primordia: what determines their size and localization, so giving rise to pattern? 11 IV. What determines the developmental pathways of the primordia once initiated? 13 V. Conclusions 15 VI. Acknowledgements 16 VII. References 16.