Comparative Transcriptional Profiling of Placenta and Endosperm in Developing Maize Kernels in Response to Water Deficit
- 1 February 2003
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 131 (2) , 568-582
- https://doi.org/10.1104/pp.014365
Abstract
The early post-pollination phase of maize (Zea mays) development is particularly sensitive to water deficit stress. Using cDNA microarray, we studied transcriptional profiles of endosperm and placenta/pedicel tissues in developing maize kernels under water stress. At 9 d after pollination (DAP), placenta/pedicel and endosperm differed considerably in their transcriptional responses. In placenta/pedicel, 79 genes were significantly affected by stress and of these 89% were up-regulated, whereas in endosperm, 56 genes were significantly affected and 82% of these were down-regulated. Only nine of the stress-regulated genes were in common between these tissues. Hierarchical cluster analysis indicated that different sets of genes were regulated in the two tissues. After rewatering at 9 DAP, profiles at 12 DAP suggested that two regulons exist, one for genes responding specifically to concurrent imposition of stress, and another for genes remaining affected after transient stress. In placenta, genes encoding recognized stress tolerance proteins, including heat shock proteins, chaperonins, and major intrinsic proteins, were the largest class of genes regulated, all of which were up-regulated. In contrast, in endosperm, genes in the cell division and growth category represented a large class of down-regulated genes. Several cell wall-degrading enzymes were expressed at lower levels than in controls, suggesting that stress delayed normal advance to programmed cell death in the central endosperm. We suggest that the responsiveness of placenta to whole-plant stress factors (water potential, abscisic acid, and sugar flux) and of endosperm to indirect factors may play key roles in determining the threshold for kernel abortion.Keywords
This publication has 67 references indexed in Scilit:
- SALT AND DROUGHT STRESS SIGNAL TRANSDUCTION IN PLANTSAnnual Review of Plant Biology, 2002
- Significance analysis of microarrays applied to the ionizing radiation responseProceedings of the National Academy of Sciences, 2001
- Gradients in Water Potential and Turgor Pressure along the Translocation Pathway during Grain Filling in Normally Watered and Water-Stressed Wheat PlantsPlant Physiology, 2000
- Sucrose and Cytokinin Modulation of WPK4, a Gene Encoding a SNF1-Related Protein Kinase from WheatPlant Physiology, 1999
- Inhibition of maize endosperm cell division and endoreduplication by exogenously applied abscisic acidPhysiologia Plantarum, 1998
- Phloem transport of abscisic acid in Ricinus communis L. seedlingsPlant, Cell & Environment, 1996
- Water deficit in developing endosperm of maize: cell division and nuclear DMA endoreduplicationPlant, Cell & Environment, 1995
- Gene Trap Tagging of PROLIFERA , an Essential MCM2-3-5 -Like Gene in ArabidopsisScience, 1995
- Water Deficits and Reproduction in MaizePlant Physiology, 1989
- Water Deficit Timing Effects on Yield Components in MaizeAgronomy Journal, 1989