Mutation detection by stacking hybridization on genosensor arrays
- 1 February 1999
- journal article
- Published by Springer Nature in Molecular Biotechnology
- Vol. 11 (1) , 13-25
- https://doi.org/10.1007/bf02789173
Abstract
A new strategy for analysis of point mutations using oligonucleotide array (genosensor) hybridization was investigated. In the new approach, a single-stranded target strand is preannealed with a labeled “stacking oligonucleotide.” and then the partially duplex labeled target molecule is hybridized to an array of glass-tethered oligonucleotide probes, targeted to the region on the target immediately adjacent to the stacking oligomer. In this configuration, the base-stacking interactions between the “capture probe” and the contiguously stacking oligomer stabilize the binding of the target molecule to its complementary probe on the genosensor array. The temperature of hybridization can be adjusted so that the target molecule will bind to the glass-tethered probe only in the presence of the stacking oligomer, and a single mismatch at or near the terminal position ol the capture probe disrupts the stacking interactions and thereby eliminates or greatly reduces the hybridization. This stacking hybridization approach was investigated using a collection of synthetic targets, probes, and stacking oligonucleotides, which permitted identification of conditions for optimal base mismatch discrimination. The oligonucleotide probes were tethered to the glass using a simple, improved attachment chemistry in which a 3’t-aminopropanol function introduced into the probe during chemical synthesis binds covalently to silanol groups on clean, underivalized glass. “Operating parameters” examined in the stacking hybridization system included length of capture probe, position, type and number of mismatches between the probe and the target, temperature of hybridization and length of washing, and the presence of terminal phosphate group in the probe, at its junction with the stacking oligomer. The results suggest that in the stacking hybridization configuration: Optimal mismatch discrimination with 9-mer probes occurs at 45‡C, after which little or no improvement in mispair rejection occurred on lengthy continued washing at 45‡C. At 25‡C optimal mismatch discrimination occurred with 7- or 8-mer probes, or with 9-mer probes containing an additional internal mismatch. The presence of a phosphate group on the 5′-end of the glass-tethered probe had no general effect on mismatch discrimination, but influenced the relative stability of different mismatches in the sequence context studied. These results provide a motivation for continued development of the slacking hybridization technique for nucleic acid sequence analysis. This approach offers several advantages over the traditional allele-specific oligonucleotide hybridization technique, and is distinct from the contiguous stacking hybridization sitrategy that the Mirzabekov laboratory has introduced (Yershov et al. (1996)Proc. Natl. Avail. Sci. USA 93, 4913–4918; Parinov et al. (1996)Nucleic Acids Res. 24, 2998–3004).Keywords
This publication has 28 references indexed in Scilit:
- Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two–colour fluorescence analysisNature Genetics, 1996
- Fluorescence-Based Sequencing of Double-Stranded DNA by Hexamer String PrimingAnalytical Biochemistry, 1996
- DNA chips: analysing sequence by hybridization to oligonucleotides on a large scaleTrends in Genetics, 1996
- High-quality automated DNA sequencing primed with hexamer strings.Genome Research, 1996
- Fluorescence-based oligonucleotide ligation assay for analysis of cystic fibrosis transmembrane conductance regulator gene mutationsHuman Mutation, 1995
- Deletion detection in the dystrophin gene by multiplex gap ligase chain reaction and immunochromatographic strip technologyHuman Mutation, 1995
- DNA sequencing by hybridization — a megasequencing method and a diagnostic tool?Trends in Biotechnology, 1994
- The spectrum of cystic fibrosis mutationsTrends in Genetics, 1992
- Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: Evaluation using experimental modelsGenomics, 1992
- Identification of the Cystic Fibrosis Gene: Cloning and Characterization of Complementary DNAScience, 1989