The pressure field due to a large circular capped air bubble rising in water

Abstract
The pressure field due to a large circular capped air bubble rising in water has been determined experimentally. The results verify the Davies & Taylor cap boundary condition and the frontal pressure field is well approximated by that due to irrotational flow around an oval body. The pressure field extends axially as far as ten bubble half-widths below the bubble floor. Immediately below the floor the pressure is constant for about two-thirds of a bubble height. The wake is closed and contains symmetric pressure minima. For the bubbles studied, turbulence, as well as the diffusion of vorticity, probably controls the momentum distribution and energy dissipation in the wake.