Thyroid Hormone–Induced Alterations in Phospholamban-Deficient Mouse Hearts

Abstract
—Alterations in the expression levels of the sarcoplasmic reticulum (SR) Ca2+-ATPase and its regulator, phospholamban, have been implicated in the effects of thyroxine hormone on cardiac function. To determine the role of phospholamban in these effects, hypothyroidism and hyperthyroidism were induced in phospholamban-deficient mice and their isogenic wild types. Hypothyroidism resulted in significant decreases of left ventricular contractility, which could be moderately stimulated by increases in preload or afterload, in both phospholamban-deficient and wild-type mice. However, the basal contractile parameters in hypothyroid phospholamban-deficient hearts were at least as high as those exhibited by hyperthyroid wild-type hearts. In hyperthyroidism, there was no further enhancement of the hyperdynamic contractile parameters in phospholamban-deficient hearts, although the wild-type hearts exhibited significantly increased contractile function compared with their respective euthyroid groups. Furthermore, increases in preload or afterload did not enhance contractility in either phospholamban-deficient or wild-type hyperthyroid hearts. Examination of the relative tissue levels of cardiac SR Ca2+-ATPase revealed increases in hyperthyroidism and decreases in hypothyroidism compared with euthyroidism, and these changes were similar between phospholamban-deficient and wild-type hearts. An opposite trend was observed for phospholamban expression levels in the wild-type group, which were depressed in hyperthyroid hearts but increased in hypothyroid hearts. These findings indicate that (1) thyroid hormones induce similar changes in the cardiac SR Ca2+-ATPase levels in either the presence or absence of phospholamban, (2) the thyroxine-induced increases in SR Ca2+-ATPase levels are not associated with any further stimulation of the hyperdynamic cardiac function in phospholamban-deficient mice, and (3) the decreased contractile parameters in hypothyroid phospholamban-deficient hearts associated with decreases in SR Ca2+-ATPase levels and myosin heavy chain isoform switches are at least as high as those of the stimulated hyperthyroid wild-type hearts. Thus, alterations in the phospholamban level or its activity may be a critical determinant of the contractile responses to altered thyroid states in the mammalian heart.