Cells exposed to antifolates show increased cellular levels of proteins fused to dihydrofolate reductase: A method to modulate gene expression
Open Access
- 12 March 2002
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 99 (6) , 3400-3405
- https://doi.org/10.1073/pnas.062036899
Abstract
Human cells exposed to antifolates show a rapid increase in the levels of the enzyme dihydrofolate reductase (DHFR). We hypothesized that this adaptive response mechanism can be used to elevate cellular levels of proteins fused to DHFR. In this study, mouse cells transfected to express a green fluorescent protein-DHFR fusion protein and subsequently exposed to the antifolate trimetrexate (TMTX) showed a specific and time-dependent increase in cellular levels of the fusion protein. Next, human HCT-8 and HCT-116 colon cancer cells retrovirally transduced to express a DHFR-herpes simplex virus 1 thymidine kinase (HSV1 TK) fusion protein and treated with the DHFR inhibitor TMTX exhibited increased levels of the DHFR-HSV1 TK fusion protein and an increase in ganciclovir sensitivity by 250-fold. The level of fusion protein in antifolate-treated human tumor cells was increased in response to a 24-h exposure of methotrexate, trimetrexate, as well as dihydrofolate. This effect depended on the antifolate concentration and was independent of the fusion-protein mRNA levels, consistent with this increase occurring at a translational level. In a xenograft model, nude rats bearing DHFR-HSV1 TK-transduced HCT-8 tumors and treated with TMTX showed, after 24 h, a 2- to 4-fold increase of fusion-protein levels in tumor tissue from treated animals compared with controls, as determined by Western blotting. The fusion-protein increase was imaged with positron-emission tomography, where a substantially enhanced signal of the transduced tumor was detected in animals after antifolate administration. Drug-mediated elevation of cellular DHFR-fused proteins is a very useful method to modulate gene expression in vivo for imaging as well as therapeutic purposes.Keywords
This publication has 27 references indexed in Scilit:
- Imaging Expression of Cytosine Deaminase-Herpes Virus Thymidine Kinase Fusion Gene (CD/TK) Expression with [124I]FIAU and PETMolecular Imaging, 2002
- Expression of a Novel Double-Mutant Dihydrofolate Reductase-Cytidine Deaminase Fusion Gene Confers Resistance to Both Methotrexate and Cytosine ArabinosideHuman Gene Therapy, 1999
- Dihydrofolate Reductase Protein Inhibits Its Own Translation by Binding to Dihydrofolate Reductase mRNA Sequences within the Coding RegionBiochemistry, 1997
- Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells.Proceedings of the National Academy of Sciences, 1995
- Specific binding of human dihydrofolate reductase protein to dihydrofolate reductase messenger RNA in vitroBiochemistry, 1993
- Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase.Proceedings of the National Academy of Sciences, 1991
- Lymphoma Regression Induced by Ganciclovir in Mice Bearing a Herpes Thymidine Kinase TransgeneHuman Gene Therapy, 1990
- Construction and use of a safe and efficient amphotropic packaging cell lineVirology, 1988
- Increase of dihydrofolate reductase activity in cultured mammalian cells after exposure to methotrexate.Proceedings of the National Academy of Sciences, 1967
- Increased Level of Dihydrofolic Reductase in Leucocytes of Patients Treated with AmethopterinNature, 1962