ANALYSIS OF NEGATIVELY CHARGED DYE-BINDING ANTIBODIES REACTIVE WITH DOUBLE-STRANDED DNA AND HEPARAN-SULFATE IN SERUM FROM PATIENTS WITH RHEUMATIC DISEASES

  • 1 September 1988
    • journal article
    • research article
    • Vol. 73  (3) , 436-442
Abstract
Antibodies to double-stranded (ds) DNA are characteristically present in serum from patients with systemic lupus erythematosus (SLE). Recently, anti-dsDNA antibodies have been shown to have the capacity to react with a diversity of molecules with repeating negative charges. Using the anionic dye Cibacron blue F3GA, bound to crosslinked agarose, we analysed the nature of antibodies capable of reacting with this dye in serum samples from patients with various rheumatic diseases. The dye-antibody complex could easily be split by eluting with solutions of increasing ionic strength, suggesting that the interaction is ionic in nature. Pepsin-digested F(ab'')2 antibodies retained the capacity to bind Cibacron blue, confirming that the binding occurred via antigen-binding sites on the antibody molecule. The eluates obtained from dye-ligand chromatography of active SLE sera contained antibodies to both dsDNA and heparan sulfate, while those of sera from patients with other non-SLE rheumatic diseases contained antibodies onl against heparan sulfate. Furthermore, the dye-ligand eluates of sera from patients with active SLE and other non-SLE rheumatic diseases were found to contain increased amounts of IgG. In one patient with SLE, levels of antibodies to dsDNA and heparan sulfate, and the amounts of total IgG in dye-ligand eluates, were shown to be correlated with disease activity.