Abstract
In this paper we investigate the connection between strong ellipticity and the regularity of weak solutions to the equations of nonlinear elastostatics and other nonlinear systems arising from the calculus of variations. The main mathematical tool is a new characterization of continuously differentiable strictly convex functions. We first describe this characterization, and then explain how it can be applied to the calculus of variations and to elastostatics.

This publication has 14 references indexed in Scilit: