Magnetohydrodynamic Simulations of A Rotating Massive Star Collapsing to A Black Hole

Abstract
We perform two-dimensional, axisymmetric, magnetohydrodynamic simulations of the collapse of a rotating star of 40 Msun and in the light of the collapsar model of gamma-ray burst. Considering two distributions of angular momentum, up to \sim 10^{17} cm^2/s, and the uniform vertical magnetic field, we investigate the formation of an accretion disk around a black hole and the jet production near the hole. After material reaches to the black hole with the high angular momentum, the disk is formed inside a surface of weak shock. The disk becomes in a quasi-steady state for stars whose magnetic field is less than 10^{10} G before the collapse. We find that the jet can be driven by the magnetic fields even if the central core does not rotate as rapidly as previously assumed and outer layers of the star has sufficiently high angular momentum. The magnetic fields are chiefly amplified inside the disk due to the compression and the wrapping of the field. The fields inside the disk propagate to the polar region along the inner boundary near the black hole through the Alfv{\'e}n wave, and eventually drive the jet. The quasi-steady disk is not an advection-dominated disk but a neutrino cooling-dominated one. Mass accretion rates in the disks are greater than 0.01 Msun/sec with large fluctuations. The disk is transparent for neutrinos. The dense part of the disk, which locates near the hole, emits neutrino efficiently at a constant rate of < 8 \times 10^{51} erg/s. The neutrino luminosity is much smaller than those from supernovae after the neutrino burst.

This publication has 0 references indexed in Scilit: