Genetic Control of Variegated KIR Gene Expression: Polymorphisms of the Bi-Directional KIR3DL1 Promoter Are Associated with Distinct Frequencies of Gene Expression

Abstract
Natural killer (NK) cells play an important role in the detection and elimination of tumors and virus-infected cells by the innate immune system. Human NK cells use cell surface receptors (KIR) for class I MHC to sense alterations of class I on potential target cells. Individual NK cells only express a subset of the available KIR genes, generating specialized NK cells that can specifically detect alteration of a particular class I molecule or group of molecules. The probabilistic behavior of human KIR bi-directional promoters is proposed to control the frequency of expression of these variegated genes. Analysis of a panel of donors has revealed the presence of several functionally relevant promoter polymorphisms clustered mainly in the inhibitory KIR family members, especially the KIR3DL1 alleles. We demonstrate for the first time that promoter polymorphisms affecting the strength of competing sense and antisense promoters largely explain the differential frequency of expression of KIR3DL1 allotypes on NK cells. KIR3DL1/S1 subtypes have distinct biological activity and coding region variants of the KIR3DL1/S1 gene strongly influence pathogenesis of HIV/AIDS and other human diseases. We propose that the polymorphisms shown in this study to regulate the frequency of KIR3DL1/S1 subtype expression on NK cells contribute substantially to the phenotypic variation across allotypes with respect to disease resistance. Natural killer (NK) cells represent a specialized blood cell that plays an important role in the detection of virus-infected or cancer cells. NK cells recognize and kill diseased cells using receptors for self antigens (HLA) that are frequently altered on aberrant cells. The HLA receptors are known as Killer cell Immunoglobulin-like Receptors, or KIR. Humans possess from four to 14 KIR receptor genes in their genome, and individual NK cells express a subset of the available KIR genes, generating specialized NK cells that detect alterations in specific HLA proteins. The mechanism of this unusual selective gene activation was recently shown by our group to be controlled by a probabilistic bi-directional promoter switch that turns on a given gene at a pre-determined frequency in the NK cell population. The current study shows that the properties of the switches in terms of the relative activity of forward (on) versus reverse (off) promoter activity is directly correlated with the frequency at which a given gene is expressed within the NK cell population. These results have important implications for our understanding of the role of NK cells in viral resistance and bone marrow transplants.

This publication has 46 references indexed in Scilit: