Brownian subordinators and fractional Cauchy problems

Abstract
A Brownian time process is a Markov process subordinated to the absolute value of an independent one-dimensional Brownian motion. Its transition densities solve an initial value problem involving the square of the generator of the original Markov process. An apparently unrelated class of processes, emerging as the scaling limits of continuous time random walks, involves subordination to the inverse or hitting time process of a classical stable subordinator. The resulting densities solve fractional Cauchy problems, an extension that involves fractional derivatives in time. In this paper, we will show a close and unexpected connection between these two classes of processes and, consequently, an equivalence between these two families of partial differential equations.

This publication has 41 references indexed in Scilit: