Inhibition of Nitric Oxide Production and the Effects of Arginine and Lactobacillus Administration in an Acute Liver Injury Model
- 1 December 1998
- journal article
- research article
- Published by Wolters Kluwer Health in Annals of Surgery
- Vol. 228 (6) , 748-755
- https://doi.org/10.1097/00000658-199812000-00005
Abstract
To study the effect of inhibiting nitric oxide production and the effects of arginine and lactobacilli administration in an acute liver injury (LI) model. Infectious complications caused by enteric bacteria are common in patients with liver diseases and those who have undergone liver surgery. Increased bacterial translocation has been proposed as one underlying mechanism. Lactobacilli constitute an integral part of the normal gastrointestinal microecology; they are involved in host metabolism and have many beneficial properties. Arginine has numerous roles in cellular metabolism and may be metabolized by lactobacilli in some cases. We have previously shown that rectal administration of Lactobacillus plantarum DSM 9843 (strain 299v), with and without arginine, in an acute LI model significantly reduces the extent of the LI and reduces bacterial translocation. To clarify the pathogenetic mechanisms, we studied the role of nitric oxide in the effects of L. plantarum and arginine in acute LI, as determined by bacterial translocation, ileal, cecal, and colonic nucleotides, RNA, and DNA. Male Sprague-Dawley rats were used. L. plantarum, 2% arginine, and/or N-nitro-L-arginine methyl ester (L-NAME), as appropriate, were administered rectally once daily for 8 days. Acute LI was induced on the eighth day by intraperitoneal injection of D-galactosamine (1.1 g/kg body weight), and samples were collected after 24 hours. Bacterial translocation was evaluated by culture of portal and arterial blood, mesenteric lymph nodes, and liver tissue. Liver enzymes and bilirubin were assayed in the serum. The bacterial load in the cecum and colon was determined. Ileal, cecal, and colonic mucosal nucleotides, RNA, and DNA were evaluated. The levels of liver enzymes and bilirubin were lower in liver-injured rats supplemented with arginine and Lactobacillus, and this effect was abolished by the addition of L-NAME. Inhibition of nitric oxide production (by L-NAME) increased bacterial translocation in many groups. L-NAME administration increased the cecal and colonic bacterial count and decreased the levels of mucosal nucleotides, RNA, and DNA. Inhibition of nitric oxide production modulated the effects of arginine and L. plantarum in this acute LI model. L-NAME potentiated the LI, as indicated by elevation of liver enzymes and bilirubin, and it also increased bacterial translocation and the cecal and colonic bacterial count. Increased bacterial translocation could be one of the mechanisms by which LI is potentiated.Keywords
This publication has 41 references indexed in Scilit:
- Role of nitric oxide synthesis in macrophage antimicrobial activityPublished by Elsevier ,2003
- Intestinal Immune Response to Oral Administration ofLactobacillus reuteriR2LC,Lactobacillus plantarumDSM 9843, Pectin and Oatbase on Methotrexate-induced Enterocolitis in RatsMicrobial Ecology in Health & Disease, 1996
- Review: Nitric Oxide, Sepsis, and Arginine MetabolismJournal of Parenteral and Enteral Nutrition, 1995
- Clinical significance of translocation.Gut, 1994
- Two unique aspects of inducible .N=0 synthase in liver cells and accessory cells: hepatic damage is minimized by hepatocyte .N=0 production and immunoregulation is mediated by macrophage. .N=O productionResearch in Immunology, 1991
- Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediateBiochemistry, 1988
- Immune and Metabolic Effects of Arginine in the Surgical PatientAnnals of Surgery, 1988
- Macrophage Cytotoxicity: Role for L-Arginine Deiminase and Imino Nitrogen Oxidation to NitriteScience, 1987
- Fulminant Hepatitis: Mayo Clinic Experience With 34 CasesMayo Clinic Proceedings, 1985
- STUDIES IN HISTOCHEMISTRY: I. DETERMINATION OF NUCLEIC ACIDS IN MICROGRAM AMOUNTS OF TISSUEJournal of Histochemistry & Cytochemistry, 1956