Acid, Bile, and CDX: the ABCs of making Barrett's metaplasia
Open Access
- 1 August 2008
- journal article
- review article
- Published by American Physiological Society in American Journal of Physiology-Gastrointestinal and Liver Physiology
- Vol. 295 (2) , G211-G218
- https://doi.org/10.1152/ajpgi.90250.2008
Abstract
Barrett's esophagus, a squamous-to-columnar cell metaplasia that develops as a result of chronic gastroesophageal reflux disease (GERD), is a risk factor for esophageal adenocarcinoma. The molecular events underlying the pathogenesis of Barrett's metaplasia are poorly understood, but recent studies suggest that interactions among developmental signaling pathways, morphogenetic factors, and Caudal homeobox (Cdx) genes play key roles. Strong expression of Cdx genes normally is found in the intestine but not in the esophagus and stomach. When mice are genetically engineered so that their gastric cells express Cdx, the stomach develops a metaplastic, intestinal-type epithelium similar to that of Barrett's esophagus. Exposure to acid and bile has been shown to activate the Cdx promoter in certain esophageal cell lines, and Cdx expression has been found in inflamed esophageal squamous epithelium and in the specialized intestinal metaplasia of Barrett's esophagus. Barrett's metaplasia must be sustained by stem cells, which might be identified by putative, intestinal stem cell markers like leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and doublecortin and CaM kinase-like-1 (DCAMKL-1). Emerging concepts in tumor biology suggest that Barrett's cancers may develop from growth-promoting mutations in metaplastic stem cells or their progenitor cell progeny. This report reviews the roles of developmental signaling pathways and the Cdx genes in the development of normal gut epithelia and the potential mechanisms whereby GERD may induce the esophageal expression of Cdx genes and other morphogenetic factors that mediate the development of Barrett's metaplasia. The role of stem cells in the development of metaplasia and in carcinogenesis and the potential for therapies directed at those stem cells also is addressed.Keywords
This publication has 75 references indexed in Scilit:
- Tracking Down the Stem Cells of the Intestine: Strategies to Identify Adult Stem CellsGastroenterology, 2007
- Identification of stem cells in small intestine and colon by marker gene Lgr5Nature, 2007
- Morphogenesis of the trachea and esophagus: current players and new roles for noggin and BmpsDifferentiation, 2006
- Normal Stem Cells and Cancer Stem Cells: The Niche MattersCancer Research, 2006
- Self-renewal and solid tumor stem cellsOncogene, 2004
- Identifying Target Genes Regulated Downstream of Cdx2 by Microarray AnalysisJournal of Molecular Biology, 2004
- PDX-1 and the PancreasPancreas, 2004
- Aberrant expression of CDX2 in Barrett's epithelium and inflammatory esophageal mucosaThe Esophagus, 2003
- Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic miceBiochemical and Biophysical Research Communications, 2002
- The Hallmarks of CancerCell, 2000