Abstract
The suggestion has been made that the Okamoto strain of spontaneously hypertensive rats (SHR) shares some features with a subgroup of patients with essential hypertension, called nonmodulators. One feature of nonmodulators is a renal blood flow response to angiotensin II (ANG II) that is blunted on a high salt diet; the blunted renal vascular response is corrected by converting enzyme inhibition. Renal blood flow (electromagnetic flowmeter) and pressor responses to graded ANG II doses (5-300 ng) were assessed in 24 SHR and 24 Wistar-Kyoto rats (WKY) ingesting 1.6% Na. In comparison to WKY, blood pressure was higher in SHR (155 +/- 4 vs 106 +/- 2 mm Hg; p less than 0.001), renal blood flow was lower (6.9 +/- 0.5 vs 8.2 +/- 0.4 ml/min/g; p less than 0.05), and the pressor response to ANG II was enhanced, (p less than 0.0005) but the renal vascular response was blunted (p less than 0.005). Captopril (1-30 mg/kg) reduced blood pressure more in SHR than in WKY but increased renal blood flow similarly in both strains. The blunted renal vascular response to ANG II in SHR was reversed by captopril, but inhibition of converting enzyme in the kidney did not parallel systemic inhibition. Maximum blockade of converting enzyme in the kidney appears to require a larger captopril dose than is required for systemic inhibition. These results suggest that the renal blood supply in SHR also shares some of the characteristics of nonmodulators and that the action of captopril on the renal blood flow probably reflects reversal of inappropriate intrarenal ANG II formation.