Kinetic and structural studies of oxygen availability of the mixed oxides Pr1–xMxOy (M = Ce, Zr)

Abstract
One composition of Pr–Ce mixed oxide and a range of compositions of Pr–Zr mixed oxide were prepared by coprecipitation methods and characterized by x-ray powder diffraction, thermogravimetric analysis, and x-ray photoelectron spectroscopy. Based on phases formed, the PrOy—ZrO2 system in an oxygen-containing atmosphere at moderate temperatures (up to 800–1000 °C) is analogous to that of CeO2–ZrO2. Addition of either Ce or Zr to pure Pr oxide affects both the total amount of oxygen that can be reversibly exchanged between oxide and gas phase and the kinetics of the redox processes. Ce dramatically increases the amount (per Pr atom) and lowers the temperature of exchange, Zr slightly decreases the amount and also lowers the temperature of exchange, and both modifiers speed up the rate. These observations are rationalized in terms of bulk and surface structural features of the mixed oxides.