Comparison of two complex land surface schemes coupled to the National Center for Atmospheric Research general circulation model

Abstract
Two climate simulations with the National Center for Atmospheric Research general circulation model (version CCM2) coupled either to the Biosphere Atmosphere Transfer Scheme (BATS) or to Sechiba land surface scheme are compared. Both parameterizations of surface‐atmosphere exchanges may be considered as complex but represent the soil hydrology and the role of vegetation in very different ways. The global impact of the change in land surface scheme on the simulated climate appears to be small. Changes are smaller than those obtained when comparing either one of these schemes to the fixed hydrology used in the standard CCM2. Nevertheless, at the regional scale, changing the land‐surface scheme can have a large impact on the local climate. As one example, wre detail how circulation patterns are modified above the Tibetan plateau during the monsoon season. Elsewhere, mainly over land, changes can also be important. In the tropics, during the dry season, Sechiba produces warmer surface temperatures than does BATS. This warming arises from differences in the soil hydrology, both storage capacity and the dynamics of soil water transport. Over the Tundra biotype, the formulation of the transpiration induces significant differences in the energy balance.

This publication has 38 references indexed in Scilit: