Performance of a 2-µm Coherent Doppler Lidar for Wind Measurements

Abstract
Measurements of boundary layer winds are presented using a 2-µm coherent Doppler lidar and the optimal performance of the maximum likelihood estimator. The systematic error for single-shot estimates was estimated as 3.6 cm s−1 using measurements from a stationary hard target. The estimation error for measurements of the radial component of the wind field was determined, as well as the fraction of the estimates that are randomly distributed over the velocity search space, when the signal power is low and speckle fading is important. The results from actual data are compared with the results from ideal simulations. The first direct estimation of the spatial structure function of the radial wind field and of the energy dissipation rate is presented for both horizontal and vertical directions of propagation. The rms estimation error of the velocity estimates is found to be within 30% of ideal performance based on simulation.

This publication has 0 references indexed in Scilit: