The Role of Hydrated Divalent Metal Ions in the Bridging of Two Anionic Groups. Anab initioQuantum Chemical and Molecular Mechanics Study of Dimethyl Phosphate and Formate Bridged by Calcium and Magnesium Ions

Abstract
Ab initio quantum chemical (Gaussian82) and molecular mechanics (AMBER2.0) computational techniques are employed to investigate the interaction of twoanions (formate and dimethyl phosphate) and a central divalent metal cation (magnesium or calcium). These systems are models for the essential GDP binding unit of the G-proteins (e.g., EF-Tu or the ras oncogene proteins) and for protein/phospholipid interactions, both of which are mediated by divalent metal cations. Various levels of hydration are utilized to examine coordination of differences between magnesium and calcium ions. Two different orientations of formate and dimethyl phosphate in direct ion contact with a magnesium ion and two waters of hydration were energy minimized with both quantum and molecular mechanics techniques. The structures and energy differences between the two orientations determined by either of the computational techniques are similar. Magnesium ion has a strong propensity to assume six coordination whereas calcium ion preferentially assumes a coordination greater than six. Likewise, water molecules attached to magnesium ion are held more rigidly than those to calcium ion, thus calcium ion is more accommodating in the exchange of water for negative ligands.