Novel Genes of the dsr Gene Cluster and Evidence for Close Interaction of Dsr Proteins during Sulfur Oxidation in the Phototrophic Sulfur Bacterium Allochromatium vinosum
Open Access
- 15 February 2005
- journal article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 187 (4) , 1392-1404
- https://doi.org/10.1128/jb.187.4.1392-1404.2005
Abstract
Seven new genes designated dsrLJOPNSR were identified immediately downstream of dsrABEFHCMK, completing the dsr gene cluster of the phototrophic sulfur bacterium Allochromatium vinosum D (DSM 180T). Interposon mutagenesis proved an essential role of the encoded proteins for the oxidation of intracellular sulfur, an obligate intermediate during the oxidation of sulfide and thiosulfate. While dsrR and dsrS encode cytoplasmic proteins of unknown function, the other genes encode a predicted NADPH:acceptor oxidoreductase (DsrL), a triheme c-type cytochrome (DsrJ), a periplasmic iron-sulfur protein (DsrO), and an integral membrane protein (DsrP). DsrN resembles cobyrinic acid a,c-diamide synthases and is probably involved in the biosynthesis of siro(heme)amide, the prosthetic group of the dsrAB-encoded sulfite reductase. The presence of most predicted Dsr proteins in A. vinosum was verified by Western blot analysis. With the exception of the constitutively present DsrC, the formation of Dsr gene products was greatly enhanced by sulfide. DsrEFH were purified from the soluble fraction and constitute a soluble α2β2γ2-structured 75-kDa holoprotein. DsrKJO were purified from membranes pointing at the presence of a transmembrane electron-transporting complex consisting of DsrKMJOP. In accordance with the suggestion that related complexes from dissimilatory sulfate reducers transfer electrons to sulfite reductase, the A. vinosum Dsr complex is copurified with sulfite reductase, DsrEFH, and DsrC. We therefore now have an ideal and unique possibility to study the interaction of sulfite reductase with other proteins and to clarify the long-standing problem of electron transport from and to sulfite reductase, not only in phototrophic bacteria but also in sulfate-reducing prokaryotes.Keywords
This publication has 80 references indexed in Scilit:
- Studies on transformation of Escherichia coli with plasmidsPublished by Elsevier ,2006
- Dissimilatory Sulfite Reductase (Desulfoviridin) of the Taurine-Degrading, Non-Sulfate-Reducing Bacterium Bilophila wadsworthia RZATAU Contains a Fused DsrB-DsrD SubunitJournal of Bacteriology, 2001
- Electron transfer between hydrogenases and mono- and multiheme cytochromes in Desulfovibrio sspJBIC Journal of Biological Inorganic Chemistry, 1998
- Overproduction of theBradyrhizobium japonicum c-Type Cytochrome Subunits of thecbb3Oxidase inEscherichia coliBiochemical and Biophysical Research Communications, 1998
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- N‐terminal methylation of proteins: Structure, function and specificityFEBS Letters, 1987
- Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprintJournal of Molecular Biology, 1986
- A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative BacteriaBio/Technology, 1983
- Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences, 1979
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970