Potential Impact of Climate Change on Schistosomiasis Transmission in China

Abstract
Appraisal of the present and future impact of climate change and climate variability on the transmission of infectious diseases is a complex but pressing public health issue. We developed a biology-driven model to assess the potential impact of rising temperature on the transmission of schistosomiasis in China. We found a temperature threshold of 15.4°C for development of Schistosoma japonicum within the intermediate host snail (i.e., Oncomelania hupensis), and a temperature of 5.8°C at which half the snail sample investigated was in hibernation. Historical data suggest that the occurrence of O. hupensis is restricted to areas where the mean January temperature is above 0°C. The combination of these temperature thresholds, together with our own predicted temperature increases in China of 0.9°C in 2030 and 1.6°C in 2050 facilitated predictive risk mapping. We forecast an expansion of schistosomiasis transmission into currently non-endemic areas in the north, with an additional risk area of 783,883 km2 by 2050, translating to 8.1% of the surface area of China. Our results call for rigorous monitoring and surveillance of schistosomiasis in a future warmer China.

This publication has 1 reference indexed in Scilit: