Abstract
To examine the relative roles of chromosomes, spindle poles and microtubules in the formation of the metaphase spindle and metakinesis, I have experimentally placed an extra centrosome-free pronucleus close to a forming bipolar spindle in a living cell. The chromosomes from the extra nucleus induce the formation of an extra half-spindle from one pole of the otherwise normal bipolar spindle with chromosomes positioned at the putative metaphase plate. I conclude that chromosomes determine the location of half-spindles by sustaining a higher than normal density of microtubules. These results are surprising for two reasons: first, because previous in vivo experiments in tissue culture cells show that mono-oriented chromosomes with functional attachments to spindle microtubules do not support halfspindle formation but oscillate unstably or move to one spindle pole. Additionally, the generally accepted view is that chromosomes attain a metastable condition at the metaphase plate as a result of a balance between forces directed to opposite spindle poles. However, our observation that chromosomes on extra half-spindles attain a metastable position in the absence of an opposing spindle pole, suggests that Ostergren’s model does not account for metakinesis in sea urchin embryos.