An essential role of myosin light‐chain kinase in the regulation of agonist‐ and fluid flow‐stimulated Ca2+influx in endothelial cells

Abstract
Cytosolic Ca2+ ([Ca2+]i) plays an important role in endothelial cell signaling. Although it has been suggested that the influx of Ca2+ can be triggered by depletion of intracellular Ca2+ stores, the mechanism (or mechanisms) underlying this phenomenon needs further elaboration. In the present study, involvement of myosin light-chain kinase (MLCK) in the regulation of Ca2+ signaling was investigated in agonist- and fluid flow-stimulated endothelial cells loaded with Ca2+-sensitive dyes. Bradykinin (BK) and thapsigargin caused an increase in [Ca2+]i followed by a sustained rise due to Ca2+ influx from extracellular space and shifted total myosin light-chain (MLC) from the unphosphorylated to the diphosphorylated form. ML-9 (100 μM), an inhibitor of MLCK, abolished Ca2+ influx and prevented MLC diphosphorylation in BK- and thapsigargin-treated cells, but did not affect Ca2+ mobilization from internal stores. Fluid flow stimulation (shear stress=5 dynes/cm2) increased [Ca2+]i and enhanced MLC phosphorylation. ML-9 also inhibited Ca2+ response and MLC phosphorylation in fluid flow-stimulated cells. The Ca2+ influx in response to BK was linearly correlated with the diphosphorylation of MLC in ML-9 treated cells. Effects of ML-5 and ML-7, analogs of ML-9, to inhibit Ca2+ influx paralleled their potencies to inhibit MLCK activity. These findings demonstrate that MLCK plays an essential role in regulating the plasmalemmal Ca2+ influx in agonist- and fluid flow-stimulated endothelial cells. This study is the first to report the close relationship between Ca2+ influx and MLC diphosphorylation.—Watanabe, H., Takahashi, R., Zhang, X.-X., Goto, Y., Hayashi, H., Ando, J., Isshiki, M., Seto, M., Hidaka, H., Niki, I., Ohno, R. An essential role of myosin light-chain kinase in the regulation of agonist- and fluid flow-stimulated Ca2+ influx in endothelial cells. FASEB J. 12, 341–348 (1998)

This publication has 22 references indexed in Scilit: