A Model for the Solution Structure of a Branched, Three-strand DNA Complex

Abstract
The solution structure of a DNA three-way junction (TWJ) containing two unpaired thymidines was elucidated using two- and three-dimensional 1H nuclear magnetic resonance (NMR) spectroscopy. TWJs with unpaired nucleotides are ubiquitous structural motifs of complex single-stranded nucleic acids. In the presence of Mg2+, the TWJ complex adopts a unique conformation in which the bases of one of the oligonucleotides (“strand 1”) are continuously stacked across the junction. Guanosine 8 of strand 3 (S3-G8), which pairs with S1-C5. stacks on S2-G5, which is paired to S1-C6. The unpaired thymidine bases (S3-T6 and S3-T7) are exposed to the solvent, whereas the sugar of S3-G8 is largely buried. S3-T6 also interacts with the sugar residue of S3-G11. All three stems conform to B-type DNA.