A modified cysteinyl-labeling assay reveals reversible oxidation of protein tyrosine phosphatases in angiomyolipoma cells
- 22 July 2008
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 105 (29) , 9959-9964
- https://doi.org/10.1073/pnas.0804336105
Abstract
The production of reactive oxygen species (ROS) exerts an additional tier of control over tyrosine phosphorylation-dependent signal transduction by transiently inhibiting the catalytic activity of specific protein tyrosine phosphatases (PTPs). Hence, the ability to detect reversible oxidation of PTPs in vivo is critical to understanding the complex biological role of ROS in the control of cellular signaling. Here, we describe an assay for identifying those PTPs that are reversibly oxidized in vivo, which utilizes the unique chemistry of the invariant catalytic Cys residue in labeling the active site with biotinylated small molecules under mildly acidic conditions. We have applied this cysteinyl-labeling assay to the study of platelet-derived growth factor (PDGF) receptor signaling in an angiomyolipoma cell model. Doing so has allowed us to detect reversible oxidation of several proteins in response to sustained PDGF stimulation. As in other cell systems, we have observed the reversible oxidation of the classical PTP SHP2 and the tumor suppressor phosphatase PTEN in response to PDGF stimulation. Furthermore, we detected reversible oxidation of members of two other subclasses of PTPs, the receptor PTP LAR and the dual-specificity phosphatase MKP1. These data demonstrate the broad selectivity of the assay, allowing us to detect representatives of all of the major subgroups of the PTP superfamily. We anticipate that this cysteinyl-labeling enrichment strategy can be applied broadly to study reversible oxidation as a mechanism of harnessing PTP catalytic activity in a variety of signaling pathways.Keywords
This publication has 30 references indexed in Scilit:
- Reversible Oxidation of the Membrane Distal Domain of Receptor PTPα Is Mediated by a Cyclic SulfenamideBiochemistry, 2006
- Protein tyrosine phosphatases: from genes, to function, to diseaseNature Reviews Molecular Cell Biology, 2006
- Functions and Mechanisms of Redox Regulation of Cysteine-Based PhosphatasesAntioxidants and Redox Signaling, 2005
- Malignant Transformation of Human Cells by Constitutive Expression of Platelet-derived Growth Factor-BBJournal of Biological Chemistry, 2005
- Differential Oxidation of Protein-tyrosine PhosphatasesJournal of Biological Chemistry, 2005
- Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxinsCurrent Opinion in Cell Biology, 2005
- H2O2-induced Intermolecular Disulfide Bond Formation between Receptor Protein-tyrosine PhosphatasesPublished by Elsevier ,2004
- In vivo analysis of the RNA interference mechanism in Trypanosoma bruceiMethods, 2003
- Specific and Reversible Inactivation of Protein Tyrosine Phosphatases by Hydrogen Peroxide: Evidence for a Sulfenic Acid Intermediate and Implications for Redox RegulationBiochemistry, 1998
- Requirement for Generation of H 2 O 2 for Platelet-Derived Growth Factor Signal TransductionScience, 1995