Abstract
A preliminary examination of a simple and rapid screening method for quantifying a range of toxic organohalides directly in aqueous solution based on their electrocatalytic reduction with a metalloporphyrin catalyst is described. Homogenous catalysis is described as well as heterogeneous catalysis using precipitated cobalt(II) tetraphenylporphine ((TPP)Co) at a graphite foil electrode which permitted the sensitive detection of a wide range of different organohalides, including a number of chemically diverse industrial pollutants such as 1,2,3,4,5,6-hexachlorocyclohexane (lindane) and carbon tetrachloride, representative of haloalkane compounds, haloalkenes such as perchloroethylene, and aromatics, such as 2,4-dichlorophenoxyacetic acid, pentachlorophenol, and the insecticide DDT. The coordinating effect of solvent on the thermodynamics of the Co(II)/(I) electrode reaction is used to practical advantage to build an amperometric detector that is insensitive to interference from oxygen, a parameter that varies considerably in environmental samples. Devices also appear relatively insensitive to the ionic composition of the analyte sample. The work provides the basis for developing a prototype sensor for screening toxic organohalogen pollutants for use in environmental monitoring situations.