Multistep Synthesis of a Radiolabeled Imaging Probe Using Integrated Microfluidics

Abstract
Microreactor technology has shown potential for optimizing synthetic efficiency, particularly in preparing sensitive compounds. We achieved the synthesis of an [18F]fluoride-radiolabeled molecular imaging probe, 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG), in an integrated microfluidic device. Five sequential processes—[18F]fluoride concentration, water evaporation, radiofluorination, solvent exchange, and hydrolytic deprotection—proceeded with high radio-chemical yield and purity and with shorter synthesis time relative to conventional automated synthesis. Multiple doses of [18F]FDG for positron emission tomography imaging studies in mice were prepared. These results, which constitute a proof of principle for automated multistep syntheses at the nanogram to microgram scale, could be generalized to a range of radiolabeled substrates.

This publication has 16 references indexed in Scilit: