Genome rearrangement in top3 mutants of Saccharomyces cerevisiae requires a functional RAD1 excision repair gene.
Open Access
- 1 November 1992
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 12 (11) , 4988-4993
- https://doi.org/10.1128/mcb.12.11.4988
Abstract
Saccharomyces cerevisiae cells that are mutated at TOP3, a gene that encodes a protein homologous to bacterial type I topoisomerases, have a variety of defects, including reduced growth rate, altered gene expression, blocked sporulation, and elevated rates of mitotic recombination at several loci. The rate of ectopic recombination between two unlinked, homologous loci, SAM1 and SAM2, is sixfold higher in cells containing a top3 null mutation than in wild-type cells. Mutations in either of the two other known topoisomerase genes in S. cerevisiae, TOP1 and TOP2, do not affect the rate of recombination between the SAM genes. The top3 mutation also changes the distribution of recombination events between the SAM genes, leading to the appearance of novel deletion-insertion events in which conversion tracts extend beyond the coding sequence, replacing the DNA flanking the 3' end of one SAM gene with nonhomologous DNA flanking the 3' end of the other. The effects of the top3 null mutation on recombination are dependent on the presence of an intact RAD1 excision repair gene, because both the rate of SAM ectopic gene conversion and the conversion tract length were reduced in rad1 top3 mutant cells compared with top3 mutants. These results suggest that a RAD1-dependent function is involved in the processing of damaged DNA that results from the loss of Top3 activity, targeting such DNA for repair by recombination.Keywords
This publication has 13 references indexed in Scilit:
- Faculty Opinions recommendation of Mutations of Bacteria from Virus Sensitivity to Virus Resistance.Published by H1 Connect ,2010
- Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae.Proceedings of the National Academy of Sciences, 1991
- The role of DNA topoisomerases in recombination and genome stability: A double-edged sword?Cell, 1990
- A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomeraseCell, 1989
- Elevated recombination rates in transcriptionally active DNAPublished by Elsevier ,1989
- RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination.Molecular and Cellular Biology, 1988
- Transcription-dependent DNA supercoiling in yeast DNA topoisomerase mutantsCell, 1988
- Cloning of yeast TOP1, the gene encoding DNA topoisomerase I, and construction of mutants defective in both DNA topoisomerase I and DNA topoisomerase II.Proceedings of the National Academy of Sciences, 1985
- Cloning, characterization, and sequence of the yeast DNA topoisomerase I gene.Proceedings of the National Academy of Sciences, 1985
- DNA TOPOISOMERASESAnnual Review of Biochemistry, 1985