The type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism.
- 1 September 1999
- journal article
- Vol. 342, 473-80
Abstract
Xylanase A (Pf Xyn10A), in common with several other Pseudomonas fluorescens subsp. cellulosa polysaccharidases, consists of a Type II cellulose-binding domain (CBD), a catalytic domain (Pf Xyn10A(CD)) and an internal domain that exhibits homology to Type X CBDs. The Type X CBD of Pf Xyn10A, expressed as a discrete entity (CBD(X)) or fused to the catalytic domain (Pf Xyn10A'), bound to amorphous and bacterial microcrystalline cellulose with a K(a) of 2.5 x 10(5) M(-1). CBD(X) exhibited no affinity for soluble forms of cellulose or cello-oligosaccharides, suggesting that the domain interacts with multiple cellulose chains in the insoluble forms of the polysaccharide. Pf Xyn10A' was 2-3 times more active against cellulose-hemicellulose complexes than Pf Xyn10A(CD); however, Pf Xyn10A' and Pf Xyn10A(CD) exhibited the same activity against soluble substrates. CBD(X) did not disrupt the structure of plant-cell-wall material or bacterial microcrystalline cellulose, and did not potentiate Pf Xyn10A(CD) when not covalently linked to the enzyme. There was no substantial difference in the affinity of full-length Pf Xyn10A and the enzyme's Type II CBD for cellulose. The activity of Pf Xyn10A against cellulose-hemicellulose complexes was similar to that of Pf Xyn10A', and a derivative of Pf Xyn10A in which the Type II CBD is linked to the Pf Xyn10A(CD) via a serine-rich linker sequence [Bolam, Cireula, McQueen-Mason, Simpson, Williamson, Rixon, Boraston, Hazlewood and Gilbert (1998) Biochem J. 331, 775-781]. These data indicate that CBD(X) is functional in Pf Xyn10A and that no synergy, either in ligand binding or in the potentiation of catalysis, is evident between the Type II and X CBDs of the xylanase.This publication has 26 references indexed in Scilit:
- Solution Structure of the Cellulose-Binding Domain of the Endoglucanase Z Secreted by Erwinia chrysanthemi,Biochemistry, 1997
- Characterization of a Double Cellulose-binding DomainJournal of Biological Chemistry, 1996
- Mannanase A from Pseudomonas fluorescens ssp. cellulosa Is a Retaining Glycosyl Hydrolase in Which E212 and E320 Are the Putative Catalytic ResiduesBiochemistry, 1996
- Interaction of Polysaccharides with the N-Terminal Cellulose-Binding Domain ofCellulomonas fimiCenC. 1. Binding Specificity and Calorimetric AnalysisBiochemistry, 1996
- Interaction of Soluble Cellooligosaccharides with the N-Terminal Cellulose-Binding Domain of Cellulomonas fimi CenC. 2. NMR and Ultraviolet Absorption SpectroscopyBiochemistry, 1996
- How to measure and predict the molar absorption coefficient of a proteinProtein Science, 1995
- The N‐terminal region of an endoglucanase from Pseudomonas fluorescens subspecies cellulosa constitutes a cellulose‐binding domain that is distinct from the catalytic centreMolecular Microbiology, 1990
- Conserved serine‐rich sequences in xylanase and cellulase from Pseudomonas fluorescens subspecies cellulosa: internal signal sequence and unusual protein processingMolecular Microbiology, 1989
- Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealingBiochemistry, 1989
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970