A finite element method (FEM) analysis of a shielded velocity-matched Ti:LiNbO/sub 3/ optical modulator

Abstract
Shielded velocity-matched Ti:LiNbO/sub 3/ Mach-Zehnder optical modulators are analyzed based on the second-order triangular-element quasi-transverse-electromagnetic finite element method. The relationship between the traveling-wave electrode thickness and the optimum overlaid layer thickness is numerically investigated. The modulation bandwidth of the shielded velocity-matched optical modulator is greatly improved by incorporating the traveling-wave electrode thickness into the design of the optimum overlaid layer thickness in the 1.5 mu m wavelength region.<>