Abstract
During photooxidation of polycyclic aromatic hydrocarbons (PAH) products can be formed which develop chemiluminescence on treatment with bases. Flash photolysis experiments show that this is the case only after previous formation of cation radicals, e.g. in the presence of CCl4 as solvent or of e-acceptors in aprotic solvents. These radicals react with oxygen to peroxy-radicals which can combine to several kinds of peroxides. Primary and secondary peroxides are the sources of chemiluminescent activity. Chemiluminescent peroxides can also be obtained by irradiation of PA H carbonyl com pounds in protic solvents under nitrogen. It is assumed that two excited CO groups combine exceptionally with their O-atom s thus creating a peroxide bond. 24 aromatic aldehydes, ketones, dicarboxylic acid anhydrides and coumarines develop chemiluminescence after illumination with wavelengths ≥ 320 nm with intensities varying 4 magnitudes of order. The sensitivity of the photochemiluminescent method is sufficient to detect amounts of PA H and their CO derivatives in the ppb to ppm range.

This publication has 0 references indexed in Scilit: