Regulation of the Saccharomyces cerevisiae HOG1 Mitogen-Activated Protein Kinase by the PTP2 and PTP3 Protein Tyrosine Phosphatases
- 1 March 1997
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 17 (3) , 1289-1297
- https://doi.org/10.1128/mcb.17.3.1289
Abstract
In response to increases in extracellular osmolarity, Saccharomyces cerevisiae activates the HOG1 mitogen-activated protein kinase (MAPK) cascade, which is composed of a pair of redundant MAPK kinase kinases, namely, Ssk2p and Ssk22p, the MAPK kinase Pbs2p, and the MAPK Hog1p. Hog1p is activated by Pbs2p through phosphorylation of specific threonine and tyrosine residues. Activated Hog1p is essential for survival of yeast cells at high osmolarity. However, expression of constitutively active mutant kinases, such as those encoded by SSK2deltaN and PBS2(DD), is toxic and results in a lethal level of Hog1p activation. Overexpression of the protein tyrosine phosphatase Ptp2p suppresses the lethality of these mutations by dephosphorylating Hog1p. A catalytically inactive Cys-to-Ser Ptp2p mutant (Ptp2(C/S)p) is tightly bound to tyrosine-phosphorylated Hog1p in vivo. Disruption of PTP2 leads to elevated levels of tyrosine-phosphorylated Hog1p following exposure of cells to high osmolarity. Disruption of both PTP2 and another protein tyrosine phosphatase gene, PTP3, results in constitutive Hog1p tyrosine phosphorylation even in the absence of increased osmolarity. Thus, Ptp2p and Ptp3p are the major phosphatases responsible for the tyrosine dephosphorylation of Hog1p. When catalytically inactive Hog1(K/N)p is expressed in hog1delta cells, it is constitutively tyrosine phosphorylated. In contrast, Hog1(K/N)p, expressed together with wild-type Hog1p, is tyrosine phosphorylated only when cells are exposed to high osmolarity. Thus, the kinase activity of Hog1p is required for its own tyrosine dephosphorylation. Northern blot analyses suggest that Hog1p regulates Ptp2p and/or Ptp3p activity at the posttranscriptional level.Keywords
This publication has 49 references indexed in Scilit:
- Yeast HOG1 MAP Kinase Cascade Is Regulated by a Multistep Phosphorelay Mechanism in the SLN1–YPD1–SSK1 “Two-Component” OsmosensorCell, 1996
- Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeastNature, 1995
- Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell linesCurrent Biology, 1995
- Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeastCurrent Opinion in Cell Biology, 1995
- MAP kinase pathways in yeast: For mating and moreCell, 1995
- A two-component system that regulates an osmosensing MAP kinase cascade in yeastNature, 1994
- Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52.Genes & Development, 1993
- An Osmosensing Signal Transduction Pathway in YeastScience, 1993
- Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphataseNature, 1992
- Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertaseCell, 1982