Abstract
The GaAs sample under study is a n-low temperature-i-p structure grown by molecular beam epitaxy with a low-temperature (LT) layer grown at 300 °C and annealed at 620 °C for 1 h. Admittance measurements on this sample reveal a negative capacitance at low frequency. This work analyzes the origin of the negative capacitance and its corresponding frequency-dependent conductance by combining two current components: charging–discharging current and the inertial conducting current. Analysis results indicate that the activation energies and time constants of both current components closely resemble each other and should correspond to the same trap. Based on the results presented herein, we can conclude that the negative capacitance at low frequency provides evidence of a generation-recombination center with an activation energy of 0.77 eV in the LT layer.